skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rektsini, Natalia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present high angular resolution imaging that detects the MOA-2008-BLG-379L exoplanet host star using Keck adaptive optics and the Hubble Space Telescope. These observations reveal host star and planet masses ofMhost= 0.434 ± 0.065Mandmp= 2.44 ± 0.49MJupiter. They are located at a distance ofDL= 3.44 ± 0.53 kpc, with a projected separation of 2.70 ± 0.42 au. These results contribute to our determination of exoplanet host star masses for the Suzuki et al. statistical sample, which will determine the dependence of the planet occurrence rate on the mass and distance of the host stars. We also present a detailed discussion of the image-constrained modeling version of theeesunhonglight-curve modeling code that applies high angular resolution image constraints to the light-curve modeling process. This code increases modeling efficiency by a large factor by excluding models that are inconsistent with the high angular resolution images. The analysis of this and other events from the Suzuki et al. statistical sample reveals the importance of including higher-order effects, such as microlensing parallax and planetary orbital motion, even when these features are not required to fit the light-curve data. The inclusion of these effects may be needed to obtain accurate estimates of the uncertainty of other microlensing parameters that affect the inferred properties of exoplanet microlens systems. This will be important for the exoplanet microlensing survey of the Roman Space Telescope, which will use both light-curve photometry and high angular resolution imaging to characterize planetary microlens systems. 
    more » « less
  2. Abstract We present an analysis of high-angular-resolution images of the microlensing target MOA-2007-BLG-192 using Keck adaptive optics and the Hubble Space Telescope. The planetary host star is robustly detected as it separates from the background source star in nearly all of the Keck and Hubble data. The amplitude and direction of the lens–source separation allows us to break a degeneracy related to the microlensing parallax and source radius crossing time. Thus, we are able to reduce the number of possible binary-lens solutions by a factor of ∼2, demonstrating the power of high-angular-resolution follow-up imaging for events with sparse light-curve coverage. Following Bennett et al., we apply constraints from the high-resolution imaging on the light-curve modeling to find host star and planet masses ofMhost= 0.28 ± 0.04Mand m p = 12.49 8.03 + 65.47 M at a distance from Earth ofDL= 2.16 ± 0.30 kpc. This work illustrates the necessity for the Nancy Grace Roman Galactic Exoplanet Survey to use its own high-resolution imaging to inform light-curve modeling for microlensing planets that the mission discovers. 
    more » « less